Information on Result #548344
There is no linear OA(2155, 167, F2, 78) (dual of [167, 12, 79]-code), because residual code would yield linear OA(277, 88, F2, 39) (dual of [88, 11, 40]-code), but
- 1 times truncation [i] would yield linear OA(276, 87, F2, 38) (dual of [87, 11, 39]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2156, 168, F2, 79) (dual of [168, 12, 80]-code) | [i] | Truncation | |
2 | No linear OOA(2156, 167, F2, 2, 79) (dual of [(167, 2), 178, 80]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2155, 167, F2, 2, 78) (dual of [(167, 2), 179, 79]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2155, 167, F2, 3, 78) (dual of [(167, 3), 346, 79]-NRT-code) | [i] | ||
5 | No linear OOA(2155, 167, F2, 4, 78) (dual of [(167, 4), 513, 79]-NRT-code) | [i] | ||
6 | No linear OOA(2155, 167, F2, 5, 78) (dual of [(167, 5), 680, 79]-NRT-code) | [i] | ||
7 | No linear OOA(2155, 167, F2, 6, 78) (dual of [(167, 6), 847, 79]-NRT-code) | [i] | ||
8 | No linear OOA(2155, 167, F2, 7, 78) (dual of [(167, 7), 1014, 79]-NRT-code) | [i] | ||
9 | No linear OOA(2155, 167, F2, 8, 78) (dual of [(167, 8), 1181, 79]-NRT-code) | [i] | ||
10 | No digital (77, 155, 167)-net over F2 | [i] | Extracting Embedded Orthogonal Array |