Information on Result #548344

There is no linear OA(2155, 167, F2, 78) (dual of [167, 12, 79]-code), because residual code would yield linear OA(277, 88, F2, 39) (dual of [88, 11, 40]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(2156, 168, F2, 79) (dual of [168, 12, 80]-code) [i]Truncation
2No linear OOA(2156, 167, F2, 2, 79) (dual of [(167, 2), 178, 80]-NRT-code) [i]m-Reduction for OOAs
3No linear OOA(2155, 167, F2, 2, 78) (dual of [(167, 2), 179, 79]-NRT-code) [i]Depth Reduction
4No linear OOA(2155, 167, F2, 3, 78) (dual of [(167, 3), 346, 79]-NRT-code) [i]
5No linear OOA(2155, 167, F2, 4, 78) (dual of [(167, 4), 513, 79]-NRT-code) [i]
6No linear OOA(2155, 167, F2, 5, 78) (dual of [(167, 5), 680, 79]-NRT-code) [i]
7No linear OOA(2155, 167, F2, 6, 78) (dual of [(167, 6), 847, 79]-NRT-code) [i]
8No linear OOA(2155, 167, F2, 7, 78) (dual of [(167, 7), 1014, 79]-NRT-code) [i]
9No linear OOA(2155, 167, F2, 8, 78) (dual of [(167, 8), 1181, 79]-NRT-code) [i]
10No digital (77, 155, 167)-net over F2 [i]Extracting Embedded Orthogonal Array