Information on Result #548466

There is no linear OA(3180, 192, F3, 120) (dual of [192, 12, 121]-code), because residual code would yield linear OA(360, 71, F3, 40) (dual of [71, 11, 41]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3181, 193, F3, 121) (dual of [193, 12, 122]-code) [i]Truncation
2No linear OA(3182, 194, F3, 122) (dual of [194, 12, 123]-code) [i]
3No linear OOA(3181, 192, F3, 2, 121) (dual of [(192, 2), 203, 122]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3182, 192, F3, 2, 122) (dual of [(192, 2), 202, 123]-NRT-code) [i]
5No linear OOA(3180, 192, F3, 2, 120) (dual of [(192, 2), 204, 121]-NRT-code) [i]Depth Reduction
6No linear OOA(3180, 192, F3, 3, 120) (dual of [(192, 3), 396, 121]-NRT-code) [i]
7No linear OOA(3180, 192, F3, 4, 120) (dual of [(192, 4), 588, 121]-NRT-code) [i]
8No linear OOA(3180, 192, F3, 5, 120) (dual of [(192, 5), 780, 121]-NRT-code) [i]
9No digital (60, 180, 192)-net over F3 [i]Extracting Embedded Orthogonal Array