Information on Result #548511
There is no linear OA(4246, 260, F4, 184) (dual of [260, 14, 185]-code), because residual code would yield linear OA(462, 75, F4, 46) (dual of [75, 13, 47]-code), but
- “Gur†bound on codes from Brouwer’s database [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4247, 261, F4, 185) (dual of [261, 14, 186]-code) | [i] | Truncation | |
2 | No linear OA(4248, 262, F4, 186) (dual of [262, 14, 187]-code) | [i] | ||
3 | No linear OA(4249, 263, F4, 187) (dual of [263, 14, 188]-code) | [i] | ||
4 | No linear OOA(4247, 260, F4, 2, 185) (dual of [(260, 2), 273, 186]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4248, 260, F4, 2, 186) (dual of [(260, 2), 272, 187]-NRT-code) | [i] | ||
6 | No linear OOA(4249, 260, F4, 2, 187) (dual of [(260, 2), 271, 188]-NRT-code) | [i] | ||
7 | No linear OOA(4251, 260, F4, 2, 189) (dual of [(260, 2), 269, 190]-NRT-code) | [i] | ||
8 | No linear OOA(4252, 260, F4, 2, 190) (dual of [(260, 2), 268, 191]-NRT-code) | [i] | ||
9 | No linear OOA(4253, 260, F4, 2, 191) (dual of [(260, 2), 267, 192]-NRT-code) | [i] | ||
10 | No linear OOA(4246, 260, F4, 2, 184) (dual of [(260, 2), 274, 185]-NRT-code) | [i] | Depth Reduction | |
11 | No linear OOA(4246, 260, F4, 3, 184) (dual of [(260, 3), 534, 185]-NRT-code) | [i] | ||
12 | No digital (62, 246, 260)-net over F4 | [i] | Extracting Embedded Orthogonal Array |