Information on Result #548595

There is no linear OA(3149, 166, F3, 99) (dual of [166, 17, 100]-code), because construction Y1 would yield
  1. linear OA(3148, 158, F3, 99) (dual of [158, 10, 100]-code), but
  2. OA(317, 166, S3, 8), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3150, 167, F3, 100) (dual of [167, 17, 101]-code) [i]Truncation
2No linear OA(3151, 168, F3, 101) (dual of [168, 17, 102]-code) [i]
3No linear OOA(3150, 166, F3, 2, 100) (dual of [(166, 2), 182, 101]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3151, 166, F3, 2, 101) (dual of [(166, 2), 181, 102]-NRT-code) [i]
5No linear OOA(3149, 166, F3, 2, 99) (dual of [(166, 2), 183, 100]-NRT-code) [i]Depth Reduction
6No linear OOA(3149, 166, F3, 3, 99) (dual of [(166, 3), 349, 100]-NRT-code) [i]
7No linear OOA(3149, 166, F3, 4, 99) (dual of [(166, 4), 515, 100]-NRT-code) [i]
8No linear OOA(3149, 166, F3, 5, 99) (dual of [(166, 5), 681, 100]-NRT-code) [i]
9No digital (50, 149, 166)-net over F3 [i]Extracting Embedded Orthogonal Array