Information on Result #549333
There is no linear OOA(3109, 210, F3, 2, 67) (dual of [(210, 2), 311, 68]-NRT-code), because 1 times depth reduction would yield linear OA(3109, 210, F3, 67) (dual of [210, 101, 68]-code), but
- construction Y1 [i] would yield
- OA(3108, 148, S3, 67), but
- the linear programming bound shows that M ≥ 78025 871208 892313 168943 730744 500191 908721 562995 779216 058480 164902 383334 112359 / 18 249022 055379 161691 813025 > 3108 [i]
- OA(3101, 210, S3, 62), but
- discarding factors would yield OA(3101, 149, S3, 62), but
- the linear programming bound shows that M ≥ 8233 296774 908639 119144 152333 781856 470978 676092 263597 209204 295760 374352 043379 617679 / 5157 240609 884987 743181 747606 796875 > 3101 [i]
- discarding factors would yield OA(3101, 149, S3, 62), but
- OA(3108, 148, S3, 67), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.