Information on Result #550590

There is no linear OOA(223, 42, F2, 2, 11) (dual of [(42, 2), 61, 12]-NRT-code), because 1 step m-reduction would yield linear OA(222, 42, F2, 10) (dual of [42, 20, 11]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(223, 42, F2, 3, 11) (dual of [(42, 3), 103, 12]-NRT-code) [i]Depth Reduction
2No linear OOA(223, 42, F2, 4, 11) (dual of [(42, 4), 145, 12]-NRT-code) [i]
3No linear OOA(223, 42, F2, 5, 11) (dual of [(42, 5), 187, 12]-NRT-code) [i]
4No linear OOA(223, 42, F2, 6, 11) (dual of [(42, 6), 229, 12]-NRT-code) [i]
5No linear OOA(223, 42, F2, 7, 11) (dual of [(42, 7), 271, 12]-NRT-code) [i]
6No linear OOA(223, 42, F2, 8, 11) (dual of [(42, 8), 313, 12]-NRT-code) [i]