Information on Result #550742
There is no linear OOA(256, 63, F2, 2, 29) (dual of [(63, 2), 70, 30]-NRT-code), because 1 step m-reduction would yield linear OA(255, 63, F2, 28) (dual of [63, 8, 29]-code), but
- “BJV†bound on codes from Brouwer’s database [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(256, 63, F2, 3, 29) (dual of [(63, 3), 133, 30]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(256, 63, F2, 4, 29) (dual of [(63, 4), 196, 30]-NRT-code) | [i] | ||
3 | No linear OOA(256, 63, F2, 5, 29) (dual of [(63, 5), 259, 30]-NRT-code) | [i] | ||
4 | No linear OOA(256, 63, F2, 6, 29) (dual of [(63, 6), 322, 30]-NRT-code) | [i] | ||
5 | No linear OOA(256, 63, F2, 7, 29) (dual of [(63, 7), 385, 30]-NRT-code) | [i] | ||
6 | No linear OOA(256, 63, F2, 8, 29) (dual of [(63, 8), 448, 30]-NRT-code) | [i] |