Information on Result #550793
There is no linear OOA(262, 63, F2, 2, 35) (dual of [(63, 2), 64, 36]-NRT-code), because 7 step m-reduction would yield linear OA(255, 63, F2, 28) (dual of [63, 8, 29]-code), but
- “BJV†bound on codes from Brouwer’s database [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(262, 63, F2, 3, 35) (dual of [(63, 3), 127, 36]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(262, 63, F2, 4, 35) (dual of [(63, 4), 190, 36]-NRT-code) | [i] | ||
3 | No linear OOA(262, 63, F2, 5, 35) (dual of [(63, 5), 253, 36]-NRT-code) | [i] | ||
4 | No linear OOA(262, 63, F2, 6, 35) (dual of [(63, 6), 316, 36]-NRT-code) | [i] | ||
5 | No linear OOA(262, 63, F2, 7, 35) (dual of [(63, 7), 379, 36]-NRT-code) | [i] | ||
6 | No linear OOA(262, 63, F2, 8, 35) (dual of [(63, 8), 442, 36]-NRT-code) | [i] |