Information on Result #550800
There is no linear OOA(263, 80, F2, 2, 31) (dual of [(80, 2), 97, 32]-NRT-code), because 1 step m-reduction would yield linear OA(262, 80, F2, 30) (dual of [80, 18, 31]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(263, 80, F2, 3, 31) (dual of [(80, 3), 177, 32]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(263, 80, F2, 4, 31) (dual of [(80, 4), 257, 32]-NRT-code) | [i] | ||
3 | No linear OOA(263, 80, F2, 5, 31) (dual of [(80, 5), 337, 32]-NRT-code) | [i] | ||
4 | No linear OOA(263, 80, F2, 6, 31) (dual of [(80, 6), 417, 32]-NRT-code) | [i] | ||
5 | No linear OOA(263, 80, F2, 7, 31) (dual of [(80, 7), 497, 32]-NRT-code) | [i] | ||
6 | No linear OOA(263, 80, F2, 8, 31) (dual of [(80, 8), 577, 32]-NRT-code) | [i] |