Information on Result #550801
There is no linear OOA(263, 68, F2, 2, 33) (dual of [(68, 2), 73, 34]-NRT-code), because 1 step m-reduction would yield linear OA(262, 68, F2, 32) (dual of [68, 6, 33]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(263, 68, F2, 3, 33) (dual of [(68, 3), 141, 34]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(263, 68, F2, 4, 33) (dual of [(68, 4), 209, 34]-NRT-code) | [i] | ||
3 | No linear OOA(263, 68, F2, 5, 33) (dual of [(68, 5), 277, 34]-NRT-code) | [i] | ||
4 | No linear OOA(263, 68, F2, 6, 33) (dual of [(68, 6), 345, 34]-NRT-code) | [i] | ||
5 | No linear OOA(263, 68, F2, 7, 33) (dual of [(68, 7), 413, 34]-NRT-code) | [i] | ||
6 | No linear OOA(263, 68, F2, 8, 33) (dual of [(68, 8), 481, 34]-NRT-code) | [i] |