Information on Result #550872
There is no linear OOA(270, 68, F2, 2, 40) (dual of [(68, 2), 66, 41]-NRT-code), because 8 step m-reduction would yield linear OA(262, 68, F2, 32) (dual of [68, 6, 33]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(270, 68, F2, 3, 40) (dual of [(68, 3), 134, 41]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(270, 68, F2, 4, 40) (dual of [(68, 4), 202, 41]-NRT-code) | [i] | ||
3 | No linear OOA(270, 68, F2, 5, 40) (dual of [(68, 5), 270, 41]-NRT-code) | [i] | ||
4 | No linear OOA(270, 68, F2, 6, 40) (dual of [(68, 6), 338, 41]-NRT-code) | [i] | ||
5 | No linear OOA(270, 68, F2, 7, 40) (dual of [(68, 7), 406, 41]-NRT-code) | [i] | ||
6 | No linear OOA(270, 68, F2, 8, 40) (dual of [(68, 8), 474, 41]-NRT-code) | [i] |