Information on Result #550914
There is no linear OOA(274, 86, F2, 2, 37) (dual of [(86, 2), 98, 38]-NRT-code), because 1 step m-reduction would yield linear OA(273, 86, F2, 36) (dual of [86, 13, 37]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(274, 86, F2, 3, 37) (dual of [(86, 3), 184, 38]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(274, 86, F2, 4, 37) (dual of [(86, 4), 270, 38]-NRT-code) | [i] | ||
3 | No linear OOA(274, 86, F2, 5, 37) (dual of [(86, 5), 356, 38]-NRT-code) | [i] | ||
4 | No linear OOA(274, 86, F2, 6, 37) (dual of [(86, 6), 442, 38]-NRT-code) | [i] | ||
5 | No linear OOA(274, 86, F2, 7, 37) (dual of [(86, 7), 528, 38]-NRT-code) | [i] | ||
6 | No linear OOA(274, 86, F2, 8, 37) (dual of [(86, 8), 614, 38]-NRT-code) | [i] |