Information on Result #551025
There is no linear OOA(283, 83, F2, 2, 46) (dual of [(83, 2), 83, 47]-NRT-code), because 6 step m-reduction would yield linear OA(277, 83, F2, 40) (dual of [83, 6, 41]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(283, 83, F2, 3, 46) (dual of [(83, 3), 166, 47]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(283, 83, F2, 4, 46) (dual of [(83, 4), 249, 47]-NRT-code) | [i] | ||
3 | No linear OOA(283, 83, F2, 5, 46) (dual of [(83, 5), 332, 47]-NRT-code) | [i] | ||
4 | No linear OOA(283, 83, F2, 6, 46) (dual of [(83, 6), 415, 47]-NRT-code) | [i] | ||
5 | No linear OOA(283, 83, F2, 7, 46) (dual of [(83, 7), 498, 47]-NRT-code) | [i] | ||
6 | No linear OOA(283, 83, F2, 8, 46) (dual of [(83, 8), 581, 47]-NRT-code) | [i] |