Information on Result #551119
There is no linear OOA(290, 96, F2, 2, 47) (dual of [(96, 2), 102, 48]-NRT-code), because 3 step m-reduction would yield linear OA(287, 96, F2, 44) (dual of [96, 9, 45]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(290, 96, F2, 3, 47) (dual of [(96, 3), 198, 48]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(290, 96, F2, 4, 47) (dual of [(96, 4), 294, 48]-NRT-code) | [i] | ||
3 | No linear OOA(290, 96, F2, 5, 47) (dual of [(96, 5), 390, 48]-NRT-code) | [i] | ||
4 | No linear OOA(290, 96, F2, 6, 47) (dual of [(96, 6), 486, 48]-NRT-code) | [i] | ||
5 | No linear OOA(290, 96, F2, 7, 47) (dual of [(96, 7), 582, 48]-NRT-code) | [i] | ||
6 | No linear OOA(290, 96, F2, 8, 47) (dual of [(96, 8), 678, 48]-NRT-code) | [i] |