Information on Result #551172
There is no linear OOA(294, 96, F2, 2, 51) (dual of [(96, 2), 98, 52]-NRT-code), because 7 step m-reduction would yield linear OA(287, 96, F2, 44) (dual of [96, 9, 45]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(294, 96, F2, 3, 51) (dual of [(96, 3), 194, 52]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(294, 96, F2, 4, 51) (dual of [(96, 4), 290, 52]-NRT-code) | [i] | ||
3 | No linear OOA(294, 96, F2, 5, 51) (dual of [(96, 5), 386, 52]-NRT-code) | [i] | ||
4 | No linear OOA(294, 96, F2, 6, 51) (dual of [(96, 6), 482, 52]-NRT-code) | [i] | ||
5 | No linear OOA(294, 96, F2, 7, 51) (dual of [(96, 7), 578, 52]-NRT-code) | [i] | ||
6 | No linear OOA(294, 96, F2, 8, 51) (dual of [(96, 8), 674, 52]-NRT-code) | [i] |