Information on Result #551261
There is no linear OOA(2100, 97, F2, 2, 56) (dual of [(97, 2), 94, 57]-NRT-code), because 8 step m-reduction would yield linear OA(292, 97, F2, 48) (dual of [97, 5, 49]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2100, 97, F2, 3, 56) (dual of [(97, 3), 191, 57]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2100, 97, F2, 4, 56) (dual of [(97, 4), 288, 57]-NRT-code) | [i] | ||
3 | No linear OOA(2100, 97, F2, 5, 56) (dual of [(97, 5), 385, 57]-NRT-code) | [i] | ||
4 | No linear OOA(2100, 97, F2, 6, 56) (dual of [(97, 6), 482, 57]-NRT-code) | [i] | ||
5 | No linear OOA(2100, 97, F2, 7, 56) (dual of [(97, 7), 579, 57]-NRT-code) | [i] | ||
6 | No linear OOA(2100, 97, F2, 8, 56) (dual of [(97, 8), 676, 57]-NRT-code) | [i] |