Information on Result #551271

There is no linear OOA(2101, 111, F2, 2, 51) (dual of [(111, 2), 121, 52]-NRT-code), because 1 step m-reduction would yield linear OA(2100, 111, F2, 50) (dual of [111, 11, 51]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2101, 111, F2, 3, 51) (dual of [(111, 3), 232, 52]-NRT-code) [i]Depth Reduction
2No linear OOA(2101, 111, F2, 4, 51) (dual of [(111, 4), 343, 52]-NRT-code) [i]
3No linear OOA(2101, 111, F2, 5, 51) (dual of [(111, 5), 454, 52]-NRT-code) [i]
4No linear OOA(2101, 111, F2, 6, 51) (dual of [(111, 6), 565, 52]-NRT-code) [i]
5No linear OOA(2101, 111, F2, 7, 51) (dual of [(111, 7), 676, 52]-NRT-code) [i]
6No linear OOA(2101, 111, F2, 8, 51) (dual of [(111, 8), 787, 52]-NRT-code) [i]