Information on Result #551273

There is no linear OOA(2101, 105, F2, 2, 53) (dual of [(105, 2), 109, 54]-NRT-code), because 5 step m-reduction would yield linear OA(296, 105, F2, 48) (dual of [105, 9, 49]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2101, 105, F2, 3, 53) (dual of [(105, 3), 214, 54]-NRT-code) [i]Depth Reduction
2No linear OOA(2101, 105, F2, 4, 53) (dual of [(105, 4), 319, 54]-NRT-code) [i]
3No linear OOA(2101, 105, F2, 5, 53) (dual of [(105, 5), 424, 54]-NRT-code) [i]
4No linear OOA(2101, 105, F2, 6, 53) (dual of [(105, 6), 529, 54]-NRT-code) [i]
5No linear OOA(2101, 105, F2, 7, 53) (dual of [(105, 7), 634, 54]-NRT-code) [i]
6No linear OOA(2101, 105, F2, 8, 53) (dual of [(105, 8), 739, 54]-NRT-code) [i]