Information on Result #551277
There is no linear OOA(2101, 97, F2, 2, 57) (dual of [(97, 2), 93, 58]-NRT-code), because 9 step m-reduction would yield linear OA(292, 97, F2, 48) (dual of [97, 5, 49]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2101, 97, F2, 3, 57) (dual of [(97, 3), 190, 58]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2101, 97, F2, 4, 57) (dual of [(97, 4), 287, 58]-NRT-code) | [i] | ||
3 | No linear OOA(2101, 97, F2, 5, 57) (dual of [(97, 5), 384, 58]-NRT-code) | [i] | ||
4 | No linear OOA(2101, 97, F2, 6, 57) (dual of [(97, 6), 481, 58]-NRT-code) | [i] | ||
5 | No linear OOA(2101, 97, F2, 7, 57) (dual of [(97, 7), 578, 58]-NRT-code) | [i] | ||
6 | No linear OOA(2101, 97, F2, 8, 57) (dual of [(97, 8), 675, 58]-NRT-code) | [i] |