Information on Result #551291

There is no linear OOA(2102, 102, F2, 2, 56) (dual of [(102, 2), 102, 57]-NRT-code), because 8 step m-reduction would yield linear OA(294, 102, F2, 48) (dual of [102, 8, 49]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2102, 102, F2, 3, 56) (dual of [(102, 3), 204, 57]-NRT-code) [i]Depth Reduction
2No linear OOA(2102, 102, F2, 4, 56) (dual of [(102, 4), 306, 57]-NRT-code) [i]
3No linear OOA(2102, 102, F2, 5, 56) (dual of [(102, 5), 408, 57]-NRT-code) [i]
4No linear OOA(2102, 102, F2, 6, 56) (dual of [(102, 6), 510, 57]-NRT-code) [i]
5No linear OOA(2102, 102, F2, 7, 56) (dual of [(102, 7), 612, 57]-NRT-code) [i]
6No linear OOA(2102, 102, F2, 8, 56) (dual of [(102, 8), 714, 57]-NRT-code) [i]