Information on Result #551323

There is no linear OOA(2104, 102, F2, 2, 58) (dual of [(102, 2), 100, 59]-NRT-code), because 10 step m-reduction would yield linear OA(294, 102, F2, 48) (dual of [102, 8, 49]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2104, 102, F2, 3, 58) (dual of [(102, 3), 202, 59]-NRT-code) [i]Depth Reduction
2No linear OOA(2104, 102, F2, 4, 58) (dual of [(102, 4), 304, 59]-NRT-code) [i]
3No linear OOA(2104, 102, F2, 5, 58) (dual of [(102, 5), 406, 59]-NRT-code) [i]
4No linear OOA(2104, 102, F2, 6, 58) (dual of [(102, 6), 508, 59]-NRT-code) [i]
5No linear OOA(2104, 102, F2, 7, 58) (dual of [(102, 7), 610, 59]-NRT-code) [i]
6No linear OOA(2104, 102, F2, 8, 58) (dual of [(102, 8), 712, 59]-NRT-code) [i]