Information on Result #551580

There is no linear OOA(2121, 162, F2, 2, 57) (dual of [(162, 2), 203, 58]-NRT-code), because 1 step m-reduction would yield linear OA(2120, 162, F2, 56) (dual of [162, 42, 57]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2121, 162, F2, 3, 57) (dual of [(162, 3), 365, 58]-NRT-code) [i]Depth Reduction
2No linear OOA(2121, 162, F2, 4, 57) (dual of [(162, 4), 527, 58]-NRT-code) [i]
3No linear OOA(2121, 162, F2, 5, 57) (dual of [(162, 5), 689, 58]-NRT-code) [i]
4No linear OOA(2121, 162, F2, 6, 57) (dual of [(162, 6), 851, 58]-NRT-code) [i]
5No linear OOA(2121, 162, F2, 7, 57) (dual of [(162, 7), 1013, 58]-NRT-code) [i]
6No linear OOA(2121, 162, F2, 8, 57) (dual of [(162, 8), 1175, 58]-NRT-code) [i]