Information on Result #551712

There is no linear OOA(2129, 181, F2, 2, 61) (dual of [(181, 2), 233, 62]-NRT-code), because 1 step m-reduction would yield linear OA(2128, 181, F2, 60) (dual of [181, 53, 61]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2129, 181, F2, 3, 61) (dual of [(181, 3), 414, 62]-NRT-code) [i]Depth Reduction
2No linear OOA(2129, 181, F2, 4, 61) (dual of [(181, 4), 595, 62]-NRT-code) [i]
3No linear OOA(2129, 181, F2, 5, 61) (dual of [(181, 5), 776, 62]-NRT-code) [i]
4No linear OOA(2129, 181, F2, 6, 61) (dual of [(181, 6), 957, 62]-NRT-code) [i]
5No linear OOA(2129, 181, F2, 7, 61) (dual of [(181, 7), 1138, 62]-NRT-code) [i]
6No linear OOA(2129, 181, F2, 8, 61) (dual of [(181, 8), 1319, 62]-NRT-code) [i]