Information on Result #551752
There is no linear OOA(2131, 153, F2, 2, 63) (dual of [(153, 2), 175, 64]-NRT-code), because 1 step m-reduction would yield linear OA(2130, 153, F2, 62) (dual of [153, 23, 63]-code), but
- adding a parity check bit [i] would yield linear OA(2131, 154, F2, 63) (dual of [154, 23, 64]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2131, 153, F2, 3, 63) (dual of [(153, 3), 328, 64]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2131, 153, F2, 4, 63) (dual of [(153, 4), 481, 64]-NRT-code) | [i] | ||
3 | No linear OOA(2131, 153, F2, 5, 63) (dual of [(153, 5), 634, 64]-NRT-code) | [i] | ||
4 | No linear OOA(2131, 153, F2, 6, 63) (dual of [(153, 6), 787, 64]-NRT-code) | [i] | ||
5 | No linear OOA(2131, 153, F2, 7, 63) (dual of [(153, 7), 940, 64]-NRT-code) | [i] | ||
6 | No linear OOA(2131, 153, F2, 8, 63) (dual of [(153, 8), 1093, 64]-NRT-code) | [i] |