Information on Result #551752

There is no linear OOA(2131, 153, F2, 2, 63) (dual of [(153, 2), 175, 64]-NRT-code), because 1 step m-reduction would yield linear OA(2130, 153, F2, 62) (dual of [153, 23, 63]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2131, 153, F2, 3, 63) (dual of [(153, 3), 328, 64]-NRT-code) [i]Depth Reduction
2No linear OOA(2131, 153, F2, 4, 63) (dual of [(153, 4), 481, 64]-NRT-code) [i]
3No linear OOA(2131, 153, F2, 5, 63) (dual of [(153, 5), 634, 64]-NRT-code) [i]
4No linear OOA(2131, 153, F2, 6, 63) (dual of [(153, 6), 787, 64]-NRT-code) [i]
5No linear OOA(2131, 153, F2, 7, 63) (dual of [(153, 7), 940, 64]-NRT-code) [i]
6No linear OOA(2131, 153, F2, 8, 63) (dual of [(153, 8), 1093, 64]-NRT-code) [i]