Information on Result #551826
There is no linear OOA(2135, 173, F2, 2, 65) (dual of [(173, 2), 211, 66]-NRT-code), because 1 step m-reduction would yield linear OA(2134, 173, F2, 64) (dual of [173, 39, 65]-code), but
- residual code [i] would yield OA(270, 108, S2, 32), but
- the linear programming bound shows that M ≥ 4 297708 243581 570312 211812 843520 / 3462 071301 > 270 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2135, 173, F2, 3, 65) (dual of [(173, 3), 384, 66]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2135, 173, F2, 4, 65) (dual of [(173, 4), 557, 66]-NRT-code) | [i] | ||
3 | No linear OOA(2135, 173, F2, 5, 65) (dual of [(173, 5), 730, 66]-NRT-code) | [i] | ||
4 | No linear OOA(2135, 173, F2, 6, 65) (dual of [(173, 6), 903, 66]-NRT-code) | [i] | ||
5 | No linear OOA(2135, 173, F2, 7, 65) (dual of [(173, 7), 1076, 66]-NRT-code) | [i] | ||
6 | No linear OOA(2135, 173, F2, 8, 65) (dual of [(173, 8), 1249, 66]-NRT-code) | [i] |