Information on Result #551887

There is no linear OOA(2138, 176, F2, 2, 67) (dual of [(176, 2), 214, 68]-NRT-code), because 1 step m-reduction would yield linear OA(2137, 176, F2, 66) (dual of [176, 39, 67]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2138, 176, F2, 3, 67) (dual of [(176, 3), 390, 68]-NRT-code) [i]Depth Reduction
2No linear OOA(2138, 176, F2, 4, 67) (dual of [(176, 4), 566, 68]-NRT-code) [i]
3No linear OOA(2138, 176, F2, 5, 67) (dual of [(176, 5), 742, 68]-NRT-code) [i]
4No linear OOA(2138, 176, F2, 6, 67) (dual of [(176, 6), 918, 68]-NRT-code) [i]
5No linear OOA(2138, 176, F2, 7, 67) (dual of [(176, 7), 1094, 68]-NRT-code) [i]
6No linear OOA(2138, 176, F2, 8, 67) (dual of [(176, 8), 1270, 68]-NRT-code) [i]