Information on Result #551974

There is no linear OOA(2142, 142, F2, 2, 76) (dual of [(142, 2), 142, 77]-NRT-code), because 8 step m-reduction would yield linear OA(2134, 142, F2, 68) (dual of [142, 8, 69]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2142, 142, F2, 3, 76) (dual of [(142, 3), 284, 77]-NRT-code) [i]Depth Reduction
2No linear OOA(2142, 142, F2, 4, 76) (dual of [(142, 4), 426, 77]-NRT-code) [i]
3No linear OOA(2142, 142, F2, 5, 76) (dual of [(142, 5), 568, 77]-NRT-code) [i]
4No linear OOA(2142, 142, F2, 6, 76) (dual of [(142, 6), 710, 77]-NRT-code) [i]
5No linear OOA(2142, 142, F2, 7, 76) (dual of [(142, 7), 852, 77]-NRT-code) [i]
6No linear OOA(2142, 142, F2, 8, 76) (dual of [(142, 8), 994, 77]-NRT-code) [i]