Information on Result #552033

There is no linear OOA(2145, 172, F2, 2, 71) (dual of [(172, 2), 199, 72]-NRT-code), because 1 step m-reduction would yield linear OA(2144, 172, F2, 70) (dual of [172, 28, 71]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2145, 172, F2, 3, 71) (dual of [(172, 3), 371, 72]-NRT-code) [i]Depth Reduction
2No linear OOA(2145, 172, F2, 4, 71) (dual of [(172, 4), 543, 72]-NRT-code) [i]
3No linear OOA(2145, 172, F2, 5, 71) (dual of [(172, 5), 715, 72]-NRT-code) [i]
4No linear OOA(2145, 172, F2, 6, 71) (dual of [(172, 6), 887, 72]-NRT-code) [i]
5No linear OOA(2145, 172, F2, 7, 71) (dual of [(172, 7), 1059, 72]-NRT-code) [i]
6No linear OOA(2145, 172, F2, 8, 71) (dual of [(172, 8), 1231, 72]-NRT-code) [i]