Information on Result #552076
There is no linear OOA(2147, 214, F2, 2, 69) (dual of [(214, 2), 281, 70]-NRT-code), because 1 step m-reduction would yield linear OA(2146, 214, F2, 68) (dual of [214, 68, 69]-code), but
- residual code [i] would yield OA(278, 145, S2, 34), but
- the linear programming bound shows that M ≥ 6 452658 897421 925882 991923 762933 214377 859980 440698 591468 415644 336128 / 20 712793 240469 221474 764436 259197 787149 263939 > 278 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2147, 214, F2, 3, 69) (dual of [(214, 3), 495, 70]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2147, 214, F2, 4, 69) (dual of [(214, 4), 709, 70]-NRT-code) | [i] | ||
3 | No linear OOA(2147, 214, F2, 5, 69) (dual of [(214, 5), 923, 70]-NRT-code) | [i] | ||
4 | No linear OOA(2147, 214, F2, 6, 69) (dual of [(214, 6), 1137, 70]-NRT-code) | [i] | ||
5 | No linear OOA(2147, 214, F2, 7, 69) (dual of [(214, 7), 1351, 70]-NRT-code) | [i] | ||
6 | No linear OOA(2147, 214, F2, 8, 69) (dual of [(214, 8), 1565, 70]-NRT-code) | [i] |