Information on Result #552076

There is no linear OOA(2147, 214, F2, 2, 69) (dual of [(214, 2), 281, 70]-NRT-code), because 1 step m-reduction would yield linear OA(2146, 214, F2, 68) (dual of [214, 68, 69]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2147, 214, F2, 3, 69) (dual of [(214, 3), 495, 70]-NRT-code) [i]Depth Reduction
2No linear OOA(2147, 214, F2, 4, 69) (dual of [(214, 4), 709, 70]-NRT-code) [i]
3No linear OOA(2147, 214, F2, 5, 69) (dual of [(214, 5), 923, 70]-NRT-code) [i]
4No linear OOA(2147, 214, F2, 6, 69) (dual of [(214, 6), 1137, 70]-NRT-code) [i]
5No linear OOA(2147, 214, F2, 7, 69) (dual of [(214, 7), 1351, 70]-NRT-code) [i]
6No linear OOA(2147, 214, F2, 8, 69) (dual of [(214, 8), 1565, 70]-NRT-code) [i]