Information on Result #552490
There is no linear OOA(2164, 196, F2, 2, 77) (dual of [(196, 2), 228, 78]-NRT-code), because 1 step m-reduction would yield linear OA(2163, 196, F2, 76) (dual of [196, 33, 77]-code), but
- adding a parity check bit [i] would yield linear OA(2164, 197, F2, 77) (dual of [197, 33, 78]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2164, 196, F2, 3, 77) (dual of [(196, 3), 424, 78]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2164, 196, F2, 4, 77) (dual of [(196, 4), 620, 78]-NRT-code) | [i] | ||
3 | No linear OOA(2164, 196, F2, 5, 77) (dual of [(196, 5), 816, 78]-NRT-code) | [i] | ||
4 | No linear OOA(2164, 196, F2, 6, 77) (dual of [(196, 6), 1012, 78]-NRT-code) | [i] | ||
5 | No linear OOA(2164, 196, F2, 7, 77) (dual of [(196, 7), 1208, 78]-NRT-code) | [i] | ||
6 | No linear OOA(2164, 196, F2, 8, 77) (dual of [(196, 8), 1404, 78]-NRT-code) | [i] |