Information on Result #552576

There is no linear OOA(2167, 193, F2, 2, 81) (dual of [(193, 2), 219, 82]-NRT-code), because 3 step m-reduction would yield linear OA(2164, 193, F2, 78) (dual of [193, 29, 79]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2167, 193, F2, 3, 81) (dual of [(193, 3), 412, 82]-NRT-code) [i]Depth Reduction
2No linear OOA(2167, 193, F2, 4, 81) (dual of [(193, 4), 605, 82]-NRT-code) [i]
3No linear OOA(2167, 193, F2, 5, 81) (dual of [(193, 5), 798, 82]-NRT-code) [i]
4No linear OOA(2167, 193, F2, 6, 81) (dual of [(193, 6), 991, 82]-NRT-code) [i]
5No linear OOA(2167, 193, F2, 7, 81) (dual of [(193, 7), 1184, 82]-NRT-code) [i]
6No linear OOA(2167, 193, F2, 8, 81) (dual of [(193, 8), 1377, 82]-NRT-code) [i]