Information on Result #552659

There is no linear OOA(2170, 193, F2, 2, 83) (dual of [(193, 2), 216, 84]-NRT-code), because 1 step m-reduction would yield linear OA(2169, 193, F2, 82) (dual of [193, 24, 83]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2170, 193, F2, 3, 83) (dual of [(193, 3), 409, 84]-NRT-code) [i]Depth Reduction
2No linear OOA(2170, 193, F2, 4, 83) (dual of [(193, 4), 602, 84]-NRT-code) [i]
3No linear OOA(2170, 193, F2, 5, 83) (dual of [(193, 5), 795, 84]-NRT-code) [i]
4No linear OOA(2170, 193, F2, 6, 83) (dual of [(193, 6), 988, 84]-NRT-code) [i]
5No linear OOA(2170, 193, F2, 7, 83) (dual of [(193, 7), 1181, 84]-NRT-code) [i]
6No linear OOA(2170, 193, F2, 8, 83) (dual of [(193, 8), 1374, 84]-NRT-code) [i]