Information on Result #552660

There is no linear OOA(2170, 184, F2, 2, 85) (dual of [(184, 2), 198, 86]-NRT-code), because 1 step m-reduction would yield linear OA(2169, 184, F2, 84) (dual of [184, 15, 85]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2170, 184, F2, 3, 85) (dual of [(184, 3), 382, 86]-NRT-code) [i]Depth Reduction
2No linear OOA(2170, 184, F2, 4, 85) (dual of [(184, 4), 566, 86]-NRT-code) [i]
3No linear OOA(2170, 184, F2, 5, 85) (dual of [(184, 5), 750, 86]-NRT-code) [i]
4No linear OOA(2170, 184, F2, 6, 85) (dual of [(184, 6), 934, 86]-NRT-code) [i]
5No linear OOA(2170, 184, F2, 7, 85) (dual of [(184, 7), 1118, 86]-NRT-code) [i]
6No linear OOA(2170, 184, F2, 8, 85) (dual of [(184, 8), 1302, 86]-NRT-code) [i]