Information on Result #552667

There is no linear OOA(2170, 166, F2, 2, 92) (dual of [(166, 2), 162, 93]-NRT-code), because 12 step m-reduction would yield linear OA(2158, 166, F2, 80) (dual of [166, 8, 81]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2170, 166, F2, 3, 92) (dual of [(166, 3), 328, 93]-NRT-code) [i]Depth Reduction
2No linear OOA(2170, 166, F2, 4, 92) (dual of [(166, 4), 494, 93]-NRT-code) [i]
3No linear OOA(2170, 166, F2, 5, 92) (dual of [(166, 5), 660, 93]-NRT-code) [i]
4No linear OOA(2170, 166, F2, 6, 92) (dual of [(166, 6), 826, 93]-NRT-code) [i]
5No linear OOA(2170, 166, F2, 7, 92) (dual of [(166, 7), 992, 93]-NRT-code) [i]
6No linear OOA(2170, 166, F2, 8, 92) (dual of [(166, 8), 1158, 93]-NRT-code) [i]