Information on Result #552721

There is no linear OOA(2172, 171, F2, 2, 92) (dual of [(171, 2), 170, 93]-NRT-code), because 12 step m-reduction would yield linear OA(2160, 171, F2, 80) (dual of [171, 11, 81]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2172, 171, F2, 3, 92) (dual of [(171, 3), 341, 93]-NRT-code) [i]Depth Reduction
2No linear OOA(2172, 171, F2, 4, 92) (dual of [(171, 4), 512, 93]-NRT-code) [i]
3No linear OOA(2172, 171, F2, 5, 92) (dual of [(171, 5), 683, 93]-NRT-code) [i]
4No linear OOA(2172, 171, F2, 6, 92) (dual of [(171, 6), 854, 93]-NRT-code) [i]
5No linear OOA(2172, 171, F2, 7, 92) (dual of [(171, 7), 1025, 93]-NRT-code) [i]
6No linear OOA(2172, 171, F2, 8, 92) (dual of [(171, 8), 1196, 93]-NRT-code) [i]