Information on Result #552777
There is no linear OOA(2174, 179, F2, 2, 90) (dual of [(179, 2), 184, 91]-NRT-code), because 2 step m-reduction would yield linear OA(2172, 179, F2, 88) (dual of [179, 7, 89]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2174, 179, F2, 3, 90) (dual of [(179, 3), 363, 91]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2174, 179, F2, 4, 90) (dual of [(179, 4), 542, 91]-NRT-code) | [i] | ||
3 | No linear OOA(2174, 179, F2, 5, 90) (dual of [(179, 5), 721, 91]-NRT-code) | [i] | ||
4 | No linear OOA(2174, 179, F2, 6, 90) (dual of [(179, 6), 900, 91]-NRT-code) | [i] | ||
5 | No linear OOA(2174, 179, F2, 7, 90) (dual of [(179, 7), 1079, 91]-NRT-code) | [i] | ||
6 | No linear OOA(2174, 179, F2, 8, 90) (dual of [(179, 8), 1258, 91]-NRT-code) | [i] |