Information on Result #552953

There is no linear OOA(2180, 187, F2, 2, 92) (dual of [(187, 2), 194, 93]-NRT-code), because 4 step m-reduction would yield linear OA(2176, 187, F2, 88) (dual of [187, 11, 89]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2180, 187, F2, 3, 92) (dual of [(187, 3), 381, 93]-NRT-code) [i]Depth Reduction
2No linear OOA(2180, 187, F2, 4, 92) (dual of [(187, 4), 568, 93]-NRT-code) [i]
3No linear OOA(2180, 187, F2, 5, 92) (dual of [(187, 5), 755, 93]-NRT-code) [i]
4No linear OOA(2180, 187, F2, 6, 92) (dual of [(187, 6), 942, 93]-NRT-code) [i]
5No linear OOA(2180, 187, F2, 7, 92) (dual of [(187, 7), 1129, 93]-NRT-code) [i]
6No linear OOA(2180, 187, F2, 8, 92) (dual of [(187, 8), 1316, 93]-NRT-code) [i]