Information on Result #552956

There is no linear OOA(2180, 182, F2, 2, 95) (dual of [(182, 2), 184, 96]-NRT-code), because 7 step m-reduction would yield linear OA(2173, 182, F2, 88) (dual of [182, 9, 89]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2180, 182, F2, 3, 95) (dual of [(182, 3), 366, 96]-NRT-code) [i]Depth Reduction
2No linear OOA(2180, 182, F2, 4, 95) (dual of [(182, 4), 548, 96]-NRT-code) [i]
3No linear OOA(2180, 182, F2, 5, 95) (dual of [(182, 5), 730, 96]-NRT-code) [i]
4No linear OOA(2180, 182, F2, 6, 95) (dual of [(182, 6), 912, 96]-NRT-code) [i]
5No linear OOA(2180, 182, F2, 7, 95) (dual of [(182, 7), 1094, 96]-NRT-code) [i]
6No linear OOA(2180, 182, F2, 8, 95) (dual of [(182, 8), 1276, 96]-NRT-code) [i]