Information on Result #553043
There is no linear OOA(2183, 203, F2, 2, 91) (dual of [(203, 2), 223, 92]-NRT-code), because 3 step m-reduction would yield linear OA(2180, 203, F2, 88) (dual of [203, 23, 89]-code), but
- residual code [i] would yield OA(292, 114, S2, 44), but
- the linear programming bound shows that M ≥ 26 699890 767307 081769 024311 263232 / 4557 > 292 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2183, 203, F2, 3, 91) (dual of [(203, 3), 426, 92]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2183, 203, F2, 4, 91) (dual of [(203, 4), 629, 92]-NRT-code) | [i] | ||
3 | No linear OOA(2183, 203, F2, 5, 91) (dual of [(203, 5), 832, 92]-NRT-code) | [i] | ||
4 | No linear OOA(2183, 203, F2, 6, 91) (dual of [(203, 6), 1035, 92]-NRT-code) | [i] | ||
5 | No linear OOA(2183, 203, F2, 7, 91) (dual of [(203, 7), 1238, 92]-NRT-code) | [i] | ||
6 | No linear OOA(2183, 203, F2, 8, 91) (dual of [(203, 8), 1441, 92]-NRT-code) | [i] |