Information on Result #553109

There is no linear OOA(2185, 192, F2, 2, 95) (dual of [(192, 2), 199, 96]-NRT-code), because 3 step m-reduction would yield linear OA(2182, 192, F2, 92) (dual of [192, 10, 93]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2185, 192, F2, 3, 95) (dual of [(192, 3), 391, 96]-NRT-code) [i]Depth Reduction
2No linear OOA(2185, 192, F2, 4, 95) (dual of [(192, 4), 583, 96]-NRT-code) [i]
3No linear OOA(2185, 192, F2, 5, 95) (dual of [(192, 5), 775, 96]-NRT-code) [i]
4No linear OOA(2185, 192, F2, 6, 95) (dual of [(192, 6), 967, 96]-NRT-code) [i]
5No linear OOA(2185, 192, F2, 7, 95) (dual of [(192, 7), 1159, 96]-NRT-code) [i]
6No linear OOA(2185, 192, F2, 8, 95) (dual of [(192, 8), 1351, 96]-NRT-code) [i]