Information on Result #553172

There is no linear OOA(2187, 183, F2, 2, 101) (dual of [(183, 2), 179, 102]-NRT-code), because 13 step m-reduction would yield linear OA(2174, 183, F2, 88) (dual of [183, 9, 89]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2187, 183, F2, 3, 101) (dual of [(183, 3), 362, 102]-NRT-code) [i]Depth Reduction
2No linear OOA(2187, 183, F2, 4, 101) (dual of [(183, 4), 545, 102]-NRT-code) [i]
3No linear OOA(2187, 183, F2, 5, 101) (dual of [(183, 5), 728, 102]-NRT-code) [i]
4No linear OOA(2187, 183, F2, 6, 101) (dual of [(183, 6), 911, 102]-NRT-code) [i]
5No linear OOA(2187, 183, F2, 7, 101) (dual of [(183, 7), 1094, 102]-NRT-code) [i]
6No linear OOA(2187, 183, F2, 8, 101) (dual of [(183, 8), 1277, 102]-NRT-code) [i]