Information on Result #553260

There is no linear OOA(2190, 187, F2, 2, 102) (dual of [(187, 2), 184, 103]-NRT-code), because 14 step m-reduction would yield linear OA(2176, 187, F2, 88) (dual of [187, 11, 89]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2190, 187, F2, 3, 102) (dual of [(187, 3), 371, 103]-NRT-code) [i]Depth Reduction
2No linear OOA(2190, 187, F2, 4, 102) (dual of [(187, 4), 558, 103]-NRT-code) [i]
3No linear OOA(2190, 187, F2, 5, 102) (dual of [(187, 5), 745, 103]-NRT-code) [i]
4No linear OOA(2190, 187, F2, 6, 102) (dual of [(187, 6), 932, 103]-NRT-code) [i]
5No linear OOA(2190, 187, F2, 7, 102) (dual of [(187, 7), 1119, 103]-NRT-code) [i]
6No linear OOA(2190, 187, F2, 8, 102) (dual of [(187, 8), 1306, 103]-NRT-code) [i]