Information on Result #553440
There is no linear OOA(2196, 216, F2, 2, 97) (dual of [(216, 2), 236, 98]-NRT-code), because 1 step m-reduction would yield linear OA(2195, 216, F2, 96) (dual of [216, 21, 97]-code), but
- residual code [i] would yield OA(299, 119, S2, 48), but
- the linear programming bound shows that M ≥ 7 222484 930221 945231 285920 393945 153536 / 10 168125 > 299 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2196, 216, F2, 3, 97) (dual of [(216, 3), 452, 98]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2196, 216, F2, 4, 97) (dual of [(216, 4), 668, 98]-NRT-code) | [i] | ||
3 | No linear OOA(2196, 216, F2, 5, 97) (dual of [(216, 5), 884, 98]-NRT-code) | [i] | ||
4 | No linear OOA(2196, 216, F2, 6, 97) (dual of [(216, 6), 1100, 98]-NRT-code) | [i] | ||
5 | No linear OOA(2196, 216, F2, 7, 97) (dual of [(216, 7), 1316, 98]-NRT-code) | [i] | ||
6 | No linear OOA(2196, 216, F2, 8, 97) (dual of [(216, 8), 1532, 98]-NRT-code) | [i] |