Information on Result #553475

There is no linear OOA(2197, 209, F2, 2, 99) (dual of [(209, 2), 221, 100]-NRT-code), because 1 step m-reduction would yield linear OA(2196, 209, F2, 98) (dual of [209, 13, 99]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2197, 209, F2, 3, 99) (dual of [(209, 3), 430, 100]-NRT-code) [i]Depth Reduction
2No linear OOA(2197, 209, F2, 4, 99) (dual of [(209, 4), 639, 100]-NRT-code) [i]
3No linear OOA(2197, 209, F2, 5, 99) (dual of [(209, 5), 848, 100]-NRT-code) [i]
4No linear OOA(2197, 209, F2, 6, 99) (dual of [(209, 6), 1057, 100]-NRT-code) [i]
5No linear OOA(2197, 209, F2, 7, 99) (dual of [(209, 7), 1266, 100]-NRT-code) [i]
6No linear OOA(2197, 209, F2, 8, 99) (dual of [(209, 8), 1475, 100]-NRT-code) [i]