Information on Result #553484
There is no linear OOA(2197, 190, F2, 2, 108) (dual of [(190, 2), 183, 109]-NRT-code), because 18 step m-reduction would yield linear OA(2179, 190, F2, 90) (dual of [190, 11, 91]-code), but
- residual code [i] would yield linear OA(289, 99, F2, 45) (dual of [99, 10, 46]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2197, 190, F2, 3, 108) (dual of [(190, 3), 373, 109]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2197, 190, F2, 4, 108) (dual of [(190, 4), 563, 109]-NRT-code) | [i] | ||
3 | No linear OOA(2197, 190, F2, 5, 108) (dual of [(190, 5), 753, 109]-NRT-code) | [i] | ||
4 | No linear OOA(2197, 190, F2, 6, 108) (dual of [(190, 6), 943, 109]-NRT-code) | [i] | ||
5 | No linear OOA(2197, 190, F2, 7, 108) (dual of [(190, 7), 1133, 109]-NRT-code) | [i] | ||
6 | No linear OOA(2197, 190, F2, 8, 108) (dual of [(190, 8), 1323, 109]-NRT-code) | [i] |