Information on Result #553552

There is no linear OOA(2199, 192, F2, 2, 109) (dual of [(192, 2), 185, 110]-NRT-code), because 17 step m-reduction would yield linear OA(2182, 192, F2, 92) (dual of [192, 10, 93]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2199, 192, F2, 3, 109) (dual of [(192, 3), 377, 110]-NRT-code) [i]Depth Reduction
2No linear OOA(2199, 192, F2, 4, 109) (dual of [(192, 4), 569, 110]-NRT-code) [i]
3No linear OOA(2199, 192, F2, 5, 109) (dual of [(192, 5), 761, 110]-NRT-code) [i]
4No linear OOA(2199, 192, F2, 6, 109) (dual of [(192, 6), 953, 110]-NRT-code) [i]
5No linear OOA(2199, 192, F2, 7, 109) (dual of [(192, 7), 1145, 110]-NRT-code) [i]
6No linear OOA(2199, 192, F2, 8, 109) (dual of [(192, 8), 1337, 110]-NRT-code) [i]