Information on Result #553585
There is no linear OOA(2200, 190, F2, 2, 111) (dual of [(190, 2), 180, 112]-NRT-code), because 21 step m-reduction would yield linear OA(2179, 190, F2, 90) (dual of [190, 11, 91]-code), but
- residual code [i] would yield linear OA(289, 99, F2, 45) (dual of [99, 10, 46]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2200, 190, F2, 3, 111) (dual of [(190, 3), 370, 112]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2200, 190, F2, 4, 111) (dual of [(190, 4), 560, 112]-NRT-code) | [i] | ||
3 | No linear OOA(2200, 190, F2, 5, 111) (dual of [(190, 5), 750, 112]-NRT-code) | [i] | ||
4 | No linear OOA(2200, 190, F2, 6, 111) (dual of [(190, 6), 940, 112]-NRT-code) | [i] | ||
5 | No linear OOA(2200, 190, F2, 7, 111) (dual of [(190, 7), 1130, 112]-NRT-code) | [i] | ||
6 | No linear OOA(2200, 190, F2, 8, 111) (dual of [(190, 8), 1320, 112]-NRT-code) | [i] |