Information on Result #553585

There is no linear OOA(2200, 190, F2, 2, 111) (dual of [(190, 2), 180, 112]-NRT-code), because 21 step m-reduction would yield linear OA(2179, 190, F2, 90) (dual of [190, 11, 91]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2200, 190, F2, 3, 111) (dual of [(190, 3), 370, 112]-NRT-code) [i]Depth Reduction
2No linear OOA(2200, 190, F2, 4, 111) (dual of [(190, 4), 560, 112]-NRT-code) [i]
3No linear OOA(2200, 190, F2, 5, 111) (dual of [(190, 5), 750, 112]-NRT-code) [i]
4No linear OOA(2200, 190, F2, 6, 111) (dual of [(190, 6), 940, 112]-NRT-code) [i]
5No linear OOA(2200, 190, F2, 7, 111) (dual of [(190, 7), 1130, 112]-NRT-code) [i]
6No linear OOA(2200, 190, F2, 8, 111) (dual of [(190, 8), 1320, 112]-NRT-code) [i]