Information on Result #553604
There is no linear OOA(2201, 237, F2, 2, 97) (dual of [(237, 2), 273, 98]-NRT-code), because 1 step m-reduction would yield linear OA(2200, 237, F2, 96) (dual of [237, 37, 97]-code), but
- residual code [i] would yield OA(2104, 140, S2, 48), but
- the linear programming bound shows that M ≥ 906615 640616 170781 657520 759485 197602 258944 / 38102 739675 > 2104 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2201, 237, F2, 3, 97) (dual of [(237, 3), 510, 98]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2201, 237, F2, 4, 97) (dual of [(237, 4), 747, 98]-NRT-code) | [i] | ||
3 | No linear OOA(2201, 237, F2, 5, 97) (dual of [(237, 5), 984, 98]-NRT-code) | [i] | ||
4 | No linear OOA(2201, 237, F2, 6, 97) (dual of [(237, 6), 1221, 98]-NRT-code) | [i] | ||
5 | No linear OOA(2201, 237, F2, 7, 97) (dual of [(237, 7), 1458, 98]-NRT-code) | [i] | ||
6 | No linear OOA(2201, 237, F2, 8, 97) (dual of [(237, 8), 1695, 98]-NRT-code) | [i] |