Information on Result #553675

There is no linear OOA(2203, 193, F2, 2, 112) (dual of [(193, 2), 183, 113]-NRT-code), because 16 step m-reduction would yield linear OA(2187, 193, F2, 96) (dual of [193, 6, 97]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2203, 193, F2, 3, 112) (dual of [(193, 3), 376, 113]-NRT-code) [i]Depth Reduction
2No linear OOA(2203, 193, F2, 4, 112) (dual of [(193, 4), 569, 113]-NRT-code) [i]
3No linear OOA(2203, 193, F2, 5, 112) (dual of [(193, 5), 762, 113]-NRT-code) [i]
4No linear OOA(2203, 193, F2, 6, 112) (dual of [(193, 6), 955, 113]-NRT-code) [i]
5No linear OOA(2203, 193, F2, 7, 112) (dual of [(193, 7), 1148, 113]-NRT-code) [i]
6No linear OOA(2203, 193, F2, 8, 112) (dual of [(193, 8), 1341, 113]-NRT-code) [i]