Information on Result #553869
There is no linear OOA(2210, 359, F2, 2, 91) (dual of [(359, 2), 508, 92]-NRT-code), because 1 step m-reduction would yield linear OA(2209, 359, F2, 90) (dual of [359, 150, 91]-code), but
- construction Y1 [i] would yield
- OA(2208, 299, S2, 90), but
- adding a parity check bit [i] would yield OA(2209, 300, S2, 91), but
- the linear programming bound shows that M ≥ 437987 836379 661851 428112 482969 460104 960459 291237 979833 080590 515802 667419 590325 215760 903409 709975 863296 / 433 753365 263741 276278 643266 060465 678125 > 2209 [i]
- adding a parity check bit [i] would yield OA(2209, 300, S2, 91), but
- linear OA(2150, 359, F2, 60) (dual of [359, 209, 61]-code), but
- discarding factors / shortening the dual code would yield linear OA(2150, 354, F2, 60) (dual of [354, 204, 61]-code), but
- the improved Johnson bound shows that N ≤ 570 693273 077464 953259 984159 736256 114541 311702 095039 925212 853150 < 2204 [i]
- discarding factors / shortening the dual code would yield linear OA(2150, 354, F2, 60) (dual of [354, 204, 61]-code), but
- OA(2208, 299, S2, 90), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2210, 359, F2, 3, 91) (dual of [(359, 3), 867, 92]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2210, 359, F2, 4, 91) (dual of [(359, 4), 1226, 92]-NRT-code) | [i] | ||
3 | No linear OOA(2210, 359, F2, 5, 91) (dual of [(359, 5), 1585, 92]-NRT-code) | [i] | ||
4 | No linear OOA(2210, 359, F2, 6, 91) (dual of [(359, 6), 1944, 92]-NRT-code) | [i] | ||
5 | No linear OOA(2210, 359, F2, 7, 91) (dual of [(359, 7), 2303, 92]-NRT-code) | [i] | ||
6 | No linear OOA(2210, 359, F2, 8, 91) (dual of [(359, 8), 2662, 92]-NRT-code) | [i] |